Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
a__g(X) → a__h(X)
a__c → d
a__h(d) → a__g(c)
mark(g(X)) → a__g(X)
mark(h(X)) → a__h(X)
mark(c) → a__c
mark(d) → d
a__g(X) → g(X)
a__h(X) → h(X)
a__c → c
Q is empty.
↳ QTRS
↳ DirectTerminationProof
Q restricted rewrite system:
The TRS R consists of the following rules:
a__g(X) → a__h(X)
a__c → d
a__h(d) → a__g(c)
mark(g(X)) → a__g(X)
mark(h(X)) → a__h(X)
mark(c) → a__c
mark(d) → d
a__g(X) → g(X)
a__h(X) → h(X)
a__c → c
Q is empty.
We use [27] with the following order to prove termination.
Knuth-Bendix order [24] with precedence:trivial
and weight map:
c=1
a__c=17
a__h_1=17
g_1=14
h_1=9
a__g_1=23
mark_1=21
d=12